Pao-a088 071

UNCLASSIFIED

PRINCETON UNIV NJ DEPT OF STATISTICS F/76 12/1
A ROBUST CONFIDENCE INTERVAL FOR SAMPLES OF FIVE ODSERVATIONS.(U)

NOV 79 K KAFADA DA 1029-76-.-0296
ARO=14284, 14=4




A AQ88071

DOG FILE COPU

writo LS
—__UNCLASS|FIED DFL G U /
SECUKITY CLASSIFICATION OF THIS PAGE (When Dats Entered) | g;%?.hj /
s 2 ¥ ‘' READ INSER ONS
. é@ REPORT DOCUMENTATION PAGE N peroRE CONBLETNe ORM
1. ! ORTY NI.!!_BER ; 2. GOVTY ACCESSION Nq;’ 3. RECIPIENT'S CA‘W OG NUMBER
{1h244 . 14-p ;{ AD-Rosspzd - . .
4. TLE (and Subtitle) o

5 Tvmmmnsemyw:aco
°/§ BOBUST CONFIDENCE INTERVAL FOR SAMPLES OF‘:‘ ~g Technical ,o]/\

JIVE gBSEﬁVATIONS - [ . 6. PERFORMING ORG. REPORTAIL

— s W
7._AUTHOR(a) s, ' .- . [TRACT © N
70 @ 7’//,( Z59- &

8.
2 e s /- ‘ ] N
2 f / )& ‘i o] ‘ - d
% Karer%a adar R, "/DA—AGZS ‘ 76— G-,B(298/ \(%

10. PROGRAM ELEMENT, PROJECT, TASK
9. PERFORMING ORGANIZATION NAME AND ADDRESS AREA & WORK UNIT NUMBERS
Princeton University.

Princeton, NJ 08540

11. CONTROLLING OFFICE NAME AND ADDRESS

’"‘1._12.. REPORT DATE
U. S. Army Research Office @ Nov 79/
Post Office Box 12211

T “WOMSTR OF PAGES
Research Triangle Park, NC 27709

34
LLD NONITORIMNCY NAME & ADDRESS(I! ditferent froomm Controlling Otlice) 15. SECURITY CLASS. (of this report)

(:ijzé;?$7% Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
C I Mg,

- S v

! FERERIR A ik
SPUTEI SN A

N AUG181980 i
17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, it diiferent from Report) :‘ "f J w

NA A

18. SUPPLEMENTARY NOTES

Approved for public release; distribution unlimited.

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

|_!._K!Y WORODS (Continue on reverse side 11 necesaary and tdentity oy otocx nunb:r)
confidence
sampling
statistics
\ probability

Fﬂﬂh:f (Coutinns am reverss olde H necossary and identify by block manber)

A robust confidence interval using biweights for the case of five observations is
proposed when the underlying distribution has somewhat heavier tails than the
Gaussian. The distribution of a "t*“like statistic is approximated by a Student's
t on the nominal four degrees of freedom using different scale factors which
depend upon the value of the biweight weights. Results given by Monte Carlo

simulations indicate that, even for very high coverage probabilities, the
intervals proposed are hi

simulation
Monte Carlo methods

ghly éfficient, in terms of the expected length of the -
Leonfidence interval, ‘4?
DD ,Yan como\or ? OV 65 13 OBSOLETE UNCLASS I FIED A

Y

% é /7: “g.w.Cﬂ nmé_snmu :-r r:{ -.ﬁ‘n—ibr;uf’i:..z

(O N |




A ROBUST CONFIDENCE INTERVAL
FOR SAMPLES OF FIVE OBSERVATIONS

by

Karen Kafadac

Pr inceton University

and

Oregon State University

Technical Report No. 154, Secies 2
Department of Sta\tistics/8
Pr inceton Univecsity
November 1979

This cesearch was suppocted in part by a

contcact with the U. S. Acmy Reseacch Office,
No. DAAG29-76-6293, awacded to the Department
of Statistics, Princeton University, o o
Pcr inceton, New Jersey. avc.L o Dor

| , . L
| . U
I : N R,

L S




ABSTRACT

A robust confidence interval using bi-
weights for the case of five observations is
proposed when the underlying distribution has
somewhat heavier tails than the Gaussian. The
distribution of a "t"-like statistic is approx-
imated by a Student's t on the néminal four
degrees of freedom using different scale fac-
tors which depend upon the value of the bi-
weight weights. Results given by Monte Carlo
simulations indicate that, even for very high
coverage probabilities, the intervals proposed
are highly efficient, in terms of the expected

length of the confidence interval.
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Q. INTRODUCTION

In an earlier report, the author [9] considered the use of
the biweight in constructing a confidence interval for a sample
of at least ten observations. Using the Student's t critical
point on nine-tenths of the nominal degrees of freedom, it was
found that the efficiency of a 100¢(1-a)% confidence interval
in the Gaussian and in symmetric stretched-tailed situations ex-
ceeded 803 across a wide range for a. In this report, we brave-
1y explore the performance of the biweight in a "t"-like statis-
tic when we have only five observations. We are looking for
good performance, not only in the (unlikely) event that our
sample is truly Gaussian, but also if our sample comes from
a population with somewhat heavier tails than the Gaussian.

Little is known about the results of robust procedures
of the location problem alone on such small size samples.

The Princeton Robustness Study [1)] concluded that, in terms of
954 confidence intervals, the estimates could show considerable
differences in non-Gaussian situations (Section 7B); their
recommendation was a redescending Hampel-type estimator (Sec-
tion 6L)., Much of the literature on the interval problem for
small samples has concentrated on the analytic distribution of
Student's t statistic (e.g., [4}, [7)). For more general
stretched-tailed situations, several authors have shown that
Student's t is highly conservative (e.g., [13}, [15])). Except
for specific underlying densities, a general solution to the

interval problem has not been considered. The situation is
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particularly complicated by the facts that

(i) suspect "outliers," even in Gaussian samples,
are not uncommon;

(ii) a 95% confidence interval for five Gaussian
observations necessarily extends beyond the
range of the data;

(iii) an extremely heavy-tailed situation offers just
minimal amount of information required for a con-
fidence interval, for, although the variance of a
given M-estimate is finite, higher moments may not be.

While there exist many estimates to use in constructing robust
confidence intervals, this report considers only the biweight in a
“t"_like statistic, largely on the basis of its previous success in
problems of interval estimation ({6], [9]), regression ([21), and
time series ([3]). This report ie divided into three parts:

Part A presents the results of biweight-"t" in the three sampling
situations; Part B investigates a method to improve our estimate
of the variance of the biweight via "compartmentalizing," and
Part C offers conclusions and strategies for the case of five

observations.




PAKT A. THE FATLURE OF "t® . ON "UNUSUAL® SAYPLES.
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ocm of biweight-*t" and concepts.

Poc a definition of the biweight and its associated
vaciance, the ceader is refecred to [12]; we mention hece
only the computational methods. The biweight estimate of

locat ion, Tpir is defined as the solution Yo the ejuation

n
5 R((xg - PN/ (es)) = 0, (
i=1

whece

o(l-o$)? = wrwq) ,  Jul <1
*(u) =
Q else
Hece, 8 is an estimate of scale from the sample Ryooeses Xoo
and ¢ 1s a multiple of the scale. (A choice of c recom-
mended in [12) is that foc the denominatoc, c'a , is
between 4o and 60 in the Gaussian case. In this study
we will choose c such that c¢°s s roughly 60 foc the

Gaussian.)

We may cewcite (1} in tecms of the *weight function®,

wiu), whece
wiu) = $(ul/u ,

whence

[
- ‘ -
n
S x.wiu;)
i i -7
o _i=l X bi
Tot " T T M T e i

£ wu,)
iz1 %

Ejuation (2) suggests an i(terative solution. We start the
iteration with a robust estimate of location (in this study,
the median of the sample). The location estimate at the kth

itecat ion, Té{’ , k 21, is found by

n

o .S,xiu((x‘ -2l etan

. i=

Toi o ; )
$wiieg - 1% seetsn
j=1

In detecrmining an estimate of scale to use in {3), formecr
studies (see, €.9.,[1],[11) ) suggest the median absolute

deviation from the median (MAD):

)

s .

= med | - Tpi

Foc ceasons to become clear latec, Lax [11] showed that a
moce efficient scale estimate may be that using the func-

tional form

R Sl CX LU ETUR T th
vhece
x, - rlo}
a, =
i co..(o)
and

.
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. i=1
n n

Ls ~|-'(u‘E| [lax( L,-1+ 3 '{'(ill))]
=1 i=1

Hece, as befoce, T(O) is the median of the sample, 3(0)

ql)l““i“ (5)

is the MAD, and <, is again chosen in ocdec that co's‘O)
is appcoximately the desiced multiple of o in the Gaussian
gi0) -

case. ({Since (2/3)c for a Gausaian sample, we

choose €y " 9 foc this calculation,)

Pinally, the denominatoc of ouc "t .bl statistic is
given by sb‘ . whece Sgl estimates the variance of Tbl .
Huber [8) decives the theoretical asymptotic variance of

Tbl' fcom which we may obtain a finite-sample appcoximation

to it as
Spy = VBT, ) = (e'syta010,)), (6)
whec e
x, - T
i bi
u, =
3 A ’

as in ejuation (4). Notice that, in functional focm,

LRV

Just as
n
s -0l
Sc(R) = L7 classical saaple 2
vie®) - Lhoryy— - classlcal sasple o
P —— T
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in the Jaussian case. However, s:t uses the median and the
MAD {n its computation, whereas Sél uses the soce advanced
location and scale estimates Tbl and LT Notice alao that

q‘ll(‘"i’) as defined in (5) amay be wcitten

n

3 uia-u)?
jd-oy

i=1

U ltegh = —5 N
Ls (l-u%)(l-Suf)][lax( 1,-1+ § (1-ufn1-5ufn]
=1 i=1

The exponents of (l-uf) ' (l-u:) . and (l—Suf) s fespec-
tively, suggest the subsccipt and the name "41l widthec® for
Sy (Equation (4)). Our biweight-*t*® statistic then takes

the form

-3

bi
nyw =
bi sbi

2. Results on samples of size five.
Performance of biweight-"t" will be evaluated on three
different distributions:

© Gaussian

O One-Wild (4 observations from N(0,1);
1 unidentified observation from N(0, 100))

© Slash (N(0,1) deviate / independent U[0,1] deviate) .
These three situations are likely to cover a reasonably broad
range of stretched-tailed behavior. The critical points of the
distribution were all computed via a Monte Carlo swindle, the
results of which may be found in [§). There were 640 samples
in the simulation for each sampling situation.

The success of biweight-"t" will be measured primarily




in terms of "efficiency" of the expected confidence interval
length (ECIL), i.e.,

ECILm n(u) 2
stele) = e

actual
where ECIL(u) was defined by Gross ([2]) as
£CiL{a) = 2"a%V-point aveldenominator of "t")

and lICILIII n(u) is the "shortest" obtainable for the situation

i
(see {9]). Furthermore, we shall be interested in approximating
the distribution of biweight-"t" to a Student's t with some
degrees of treedom, for practical purposes. Hence, we shall

make the correspondence

(critical point, a) ---5 degrees of freedom .

When we examine the performance of biweight-"t" on samples
of only five observations (Exhibit 1), we are initially dis-
appointed with the results. Not only do we see low efficiencies
in the lengths of the confidence intervals, but the matched

degrees of tieedom are unusually low. It appears that the

numerator has extremely heavy tails; hence, " ‘bi is matched

to a Student's t with few degrees of freedom.

3. "Unusual" Gaussian samples.

In Exhibit 2 we consider the (swindled) estimate of one

tail probability. Notice that these samples have been sin-

gled out because they resulted in unusually large estimates.
All of these samples have the pcopecty that three of the
five observations (just ove¢ half) ace extcemely close
together, with the other two being far enough away that the
bisjuace function assigns them zero weight. Such Gaussian
samples, although moderately cace, do occuc with mace than
2% fcejuency. In these cases, Spi i3 sure to gcossly
undecestimate o, and s:l << Vac (numecatoc}, since the
blisjuare operates as for n=3 with extcemely small vaciance,
Any ceasonable cobust estimate of scale would pecform like-
wise. Exhibit 2(b) presents location and scale estimates
for moce "typical®" Gaussian samples. In these samples, 53‘
is much closec in value to the usual sample 521 hence, good

pec formance in biweight-*t* is expected.

4. Quantifying the behavior of “unusual® samples.

If we can impcove the estimate of
vac (numecator)
in these problematic Gaussian samples, we may hope that a
similac impcovement may be used when the undeclying distci-
bution is not Gaussian. We thecefore need a measure by
which to classify the 'unJ;unl' gamples, Returning to the
focaula (4} foc s:‘. two possibilities for such a measuce

ace suggested by:
n
a) I w(u

)
s !
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of

]
b} 3 ¥ (u))
ial
whece

*1"Toi

u, =
i L 172
6°(n Spi)

s D®5,

We are pacrticulacly intecested in distinguishing those
samples for which one oc more of the observations ace far
from the estimated centec. This coccesponds to iu‘l >3,
foc which i'(ui)-u(u‘)-o. Oue to the monotonicity of
w(lul), smallec values of the weight fuaction always indi-

cate incceasingly greatec distance.
n

3 v(u‘) will be a moce informative ancillacy statistic than
i=l

It appears likely that

n
9.
il
Exhibit ) shows stem-and-leaf plots for the values of
n
lflu(ul) foc the thcee sampling situations. The unusual

Gaussian samples desccibed above all fall among the samples
n

for which 2 v(u‘)zz.ol. The majocity of the samples have

i=1

li)-(u‘):c.ao, foc which Sg‘ pec focmed adequately. The case
-

n

.S‘w(u‘):).sa cofcesponds to one obsecvation belng

treated essentially as an outlier.

whece

The stem-and-leaf plots
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suggest that the three cases can be specified in tecrms of a

cange of one unit in the value of

n
W= 3 wia ) (N
i=l
Since we would like to choose the intecval s0 as to most

clearly differentiste awong these samples, we choose end-

points whece the density of W is lows

two "falae outliers”: W< 3.3
one “"false outliec®: 3.3 ¢ W <43 (8)
no “talse outliecs®: [ P2 P N

Hece, "false” alludes to the fact that these obsecvations,
although some distance fcom the bulk of the sample, are
nonetheless bonafide obsecvations fcom the same distcibution
as the others. FPo¢ the case of One-Wild where
3.3 < W < 4.3, the out)iec does in fact usually corcespond
to the wild shot (fcom a N(O0, 100) distcibution). Hen-
cefocth, it will be convenient to analyze our cesults for
n=S not only by situation but by slice. A slice is defined
by:

a) n, a given numbec of obsecvations;

b) F, a distcibutional situation; 9

c) a cange of values, w and vy foc which

M, K H <™

L u*
For a moce detailed analysis of the effect of W on the
biwe ight-*t"® distcibution, we genecated nine slices of 600

samples each, whece




- 1% -

a) n=S
b) P =~ Gaussian, One-wild, or Slash

) W< 3.3, 3.3 CH <4, W,

E£xhibit 4 tabulates the estimated fcejuencies foc each
slice, and the average values of the biweight and S:‘ based
on the 600 simulated samples. We see that a Jow-welight
alice for n-5 is celatively infregquent, occucring in 2%-5%
of a)l samples fcom out situations, yet the frequency is
just lacge uvnough to produce the low efficiencies in the
biweight-"t" intervals of Exhibit 1. Panel 8 of Exhibit 4
ceveals that indeed the use of the biweight in the numecator
of 'l'bl, despite its deflated scaling, is not the ceal
problem, as its vaciance, even in the low-weight Zaussian
samples, is only slightly moce than twice the var fance of
the optimal mean. The biwelight is a big success in the
hiyh-weight samples: notice that the vacriance of the optimal
mean in the Gaussian situation is nearly attained, and that

in all hign-weight slices,
ave {(denominatocr of 't'b‘)zivar(nulerator of‘%"bi) (10)

In the medium-weight slice, Egn. (10) alceady approximately
holds for the moce stcetched-tailed distcibutions, bur it is
oft by neacly a factoc of 10 in the Gaussian situation. 1In
ocdec to achieve coccespondingly good cesults focr all
medium-weight slices, it is likely that we will need to be

consecvative in some places,

- 12 -

Finally, the lacge di3sccepancy among situations in
ave(Sé‘) for the low-weight slices suggests that a deepef

look at the behavior of these samples is cejuiced.

5. Digression: Gcanulacity of the weight distcibution,

It is worth commenting on the granularity of the dis-

n

tcibution of W = 3 w(u;) for the thcee situations. This
i=1

tendency ia pactly due to ouc scale est imate,

8= sy = 0t %8y,
in
wiuy) = Wl =T, )/ (631)

As a cather extceme case, considec the following estimate of

¥
& = (1/6)min (le-xll,lxz—xll,Ix‘—xal,lxs-le)

where the sample x is assumed ocdered ('15'25"'5'5)' Then

3x,w{u
ro. oy
Iwiu)) 3
since w(u‘)-D foc all | except i=3, when w(u;)-l. Hence,
this functlonal focm foc & will cesult in
n
W= §w(u) =1 = constant,

i=l

cegacdless of any fucthec charactecistics of the sample.
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That this is a cather silly estimate €o¢ @ can be seen from
the following two fabcicated samples:

a) ~-1.6, -0.8, -0.6, 0.4, 1.0 ==> & = 0.03;

b) -0.9, -0.8, -0.6, 0.4, 0.4 =2> & = (.01,
Nonetheless, the example does secve to indicate that the
cont inuity of the density function of W is highly dependent
upon choice of scale. 1t {s juite possible that thece
exists a choice of scale foc which W has a somewhat smoother
density function. Por reasonably efficlent estimates of

scale, howevec, its density is likely to have modes

sepacated coughly by one unit (on the weight scale). The
cutoff points we have selected in Byuation (8) ace likely to
be satisfactocy (i.e., to come at vecy Jow densities) foc

the weighting based on any reasonable scale estimate.

- 14 -

PART B8: COMPARTMENTALIZING: SLIZES.

6. A scaled biweight-"t" foc slices.

Since our three weight classes in each situation
vaguely cepcesent the degree to which Sg‘ fatls as an esti-
wate of the vaclance of the biweight, a scaled vecsion of
.‘-bl' conditional on a given weight slice, might have a
distcibution which is moce similac to a Student's t. That
is, we would like to find a scale factoc, K, such that

"t

.
el Kbi 2a ) w W, .0 ) an

Toy
6,

=P zalvb<w5w“.n)-l’ltv>al

whece both K and ¥ may depend on W = 3{weights) and on the

sample size n.

One choice of & is suggeated by the values in Exhibit
4(b). If we want to insist that (=n-1, and, in addition,
that (10) hold appcoximately in all situations, we would
choose our scale factors as follows:

congervat ive K
Gausgian One:zWild Slash (max of thcee)

low W 15.49 8.45 2.21 15.49
medium W 4.36 1.05 0.90 4.36
high L] Q.94 0.82 1.07 1.07

While these scale factocs ace all of the same ocdec in the
sedium- and high-weight slices, cleacly we may be much too

consafvative in the low-welght slice. Pucthecmoce, it is
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not altogether cectain that a matching of
ave(denominatotz) Z vac {numecatoc}

will transfocm a biweight-"t"® distcibution into one from the

Student *s-t family.

An adaptive alternative may be based on dealing with

the actual critical points fcom biweight-"t". Ideally,

't'(d-‘)/tv(d‘) = caonstant €oc atl <
o¢, ejuivalently,
Y‘(l/) = qu('t'(di)/tv(di)) » constant focr all ql

A least squaces appcoach would minimize

H 2
b lyl(V) - conatant} (12

t=)

whence
constant = ave(y (1) = Y.

Tnen, minimizing (12 ) would be ejuivalent to

-;P ,z(vq

whece 32(09 is our sample variance focrmula
2 3 o2
5N = 5y (N-YINI T/ M9-1)
i=1

Howevecr, our y‘(yo are not independent, and, even If they

- 16 -

wece, the usual sample 52 would be vetoed on the basis of

its ovecall nonrobustness, As we mentioned in [5], sé‘ pec -
focms well with a sufficient number of obsecvations [hece we
will use g=)0, where g is the number of values of yl(goj.

Moceovec, Poctnoy's fesults {[14])) indicate that using the
tedescending 1—functlop may help us with at least one type
of dependence among the obsecvations. Let us thecefore

choose Vb by
Vot sg‘(vo) ts a minimum. (13)

Secondly, we select a moce consecvatlve value for the con-

stant by ..signing

log(scale factoc) = ]:T:QY‘(Ub) (14)

7. Log{scale factors), by slice.

Exhibit 5 summac izes the degrees of fceedom and log
{scale factors) foc the slices, both for VD" and foc Vg
chosen via (13}). The closeness of ouc fit to a Student's t
on {/ degcees of freedom may be viewed graphically by plot-

ting

log ((scaled ‘t'(d‘))/tv(d‘)l vs -log(d;)

with one standacd deviation “confidence limits™ obtained

fcom the cucves
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log{(scaled 'L'(ﬂi'lStd ectot]/tv(ql)i vs -loq(q‘)

Notice in these plots (Exhibit 6) that:
{}) a negative value of the ordinate indicates a con-
secvative fit, and

(2) a negative slope suggests a lacgec value of (.

The most successful appcoximarion is the high-weight

slice, fo¢ which
{biweight-"t")/0.95 approximately distcibuted as ty
{c.f. Exhibit 6(a)).

Poc the medium-weight slice, a unifocm cescaling of the
biweight-"t" distcibution moce closely matches a Student's t
on 3 d.f. One might argue that the Gaussian sample shows a
“"suspect® outliec, and a conservative, albeit wasteful,
approach is to allow oucselves one fewac degree of freedom.
Thece is only a small probability that we will waste this
valid obsecvation in the Gausalan case (0.028 fcom Exhibit
4). Of coucse, there is a much gceater 1likelihood of
obtatning a medium-weight One-Wild sample; in this case,
infecence based on four of the obsecvations is a sensible
ptocedure in the absence of knowledge of the kind of contam-
ination. Exhibit 7(a) shows the relative impcovement in

compac ing our scaled *t" points to Student's t on 3 d.f.

The scale factocs for the low-weight slice, howevec,
ace stil) cadically different. Not sucpcisingly, *"t* needs

to be adjusted moce dcastically when the undeclying distci-

- 18 -

bution is truly Gaussian. For a decent matching at the less
extreme tail areas, a scaled “"t" compared to 2 d.f, otfters a
possible approach (Exhibit 7(b)}, but the approximation is still
far from good.

Comparing the graphs for the two low-weight fits, one pos-
sible procedure is

for .05 < a < .0005 , compare "t"/21.0 to Student's ty,

for .0005 < a < .00001, compare "t"/91.2 to Student's -

It is, however, worthwhile to characterize the differences in
the three louw-weight classes. One difference is apparent from
Exhibits § through 7: the scale factors and approximations for
One-Wild and Slash are very similar to one another and each is con-
siderably different from the Gaussian. If we had a method whereby
we could discriminate the Gaussian samples from those whose under-
lying distribution has more stretched tails, we might be more
successful in adaptively scaling biweight-"t". This idea is

pursued in greater detail in (101,
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8. Conclusions for n=z5.

The initial aim of this study, that of constructing a valid
confidence interval for the center of a population fur which we
have only five observations, led to a more ambitious goal of
characterizing the distribution of the biweight-"t" statistic.
The case with -5 is perhaps the most difficult of all: there
are too many observations to develop an analytic selution, yet
50 few that the likelihood of obtaining potentially misleading
samples cannut be ignored. In searching for a more complete des-
cription of the tail behavior of "t" on five observations, we
discovered that a characterization based on the sum of the (bi-

weight) weights offers a more satisfying approach.

When we can borrow information on width from several samples,

we may compute both T . and S2

bi bi USing a scale estimate pooled

from all sawmples:

In \ 1/2
S ¥ )
3=, i=]
spool = (959)\1Jn Jn Ja

EETTRITEE X TRY
i=) i=]

sp = pooled MAD, u = (x)l-xl,...,an—XJ).

In this case, as Exhibit 8 reveals, biweight-"t" performs fairly
well., (Thiu Exhibit tabulates only the matched degrees of free-
dom and ECIL efficiencies for the sake of brevity; J refers to

the number uf samples from which scale intformation has been bor-
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rowed.) It is not dlways clear, however, if and when we may bor-

row. An unjustified usage of borrowing may be extremely mislead-

ing. In this regard, the sum of the weights may lend insight:

an unexpectedly low value of W may caution us to treat this sample
separately from the rest and not use it in borrowing width infor-

mation. The borrowing issue plays a more important role in the

two-sample problem (10].

In the absence of additional samples of, say, five observa-
tions, or any additional width information for our sample at hand,
a conservative approach to the interval estimation problem for the

single sample of five observations would be

5
A) For .[ u(ui) > 4.3, use t“(u)'(O.SS'S

)
i=1 i

b
for the allowance in the confidence interval.

As we saw in Section 6, the resulting contidence

interval performs very well;

B) For 3.3 < Ew(ui) < 4.3, use either t“(u)‘(7.l'5bi)

or ta(n)'(u.ﬂ'sbi) for the allowance;

¢) For Ew(ui) < 3.3,
(i) for .05 € a g .001 , compare "t"/21.0 to Student's ty;
for .001 < a § .00001, compare "t"/91.2 to Student's i
(ii) consider the improvements, based on additional an-

cillary statistics, given in [10];

(iii) pray for more information.
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Dist'n.
Gaussian

Dist'n.
One-Wild

Dist'n.
Slash

Tail Pr. Crit. Pt.
0.00001 222.6
0.000025 219.6
0.00005 206.7
0.00010 186.0
0.00050 118.1
0.00100 86.79
0.00500 26.93
0.01000 13.20
0.02500 4.325
0.05000 2.650
0.00001 133.8
0.000025 120.5
0.00005 109.0
0.00010 95.77
0.00050 62.60
0.00100 47.70
0.00500 16.10
0.01000 8.170
0.02500 3.390
0.05000 2.196
0.00001 294.188
0.000025 258.162
0.00005 227.870
0.00010 210.231
0.00050 102.154
0.00100 53.148
0.00500 15.011
0.01000 8.820
0.02500 3.954
0.05000 2.472
Exhibit 1:

Results on one-sample biweight -
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265.051
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Sample
Number

25
59

159

165

178
299
328
388
444
511
515
535
575
604

mean

x(1)

-0.552
-1.338
-0.093
-0.958
-1.800
-1.902
-0.994
-0.480
-0.270
-0.513
-1.454
-0.898
-0.265
-2.877

std err(mean)

(A) Bf"tqﬁ >3.747) for

x(2)

-0.434
-1.292
-0.088
-0.940
-1.349
-0.540
-0.816
-0.460
-0.173

0.526
-1.442
-0.879

0.517
-2.346

14

Exhibit 2

"unusual” Gaussian samples.

x(3)

-0.479
-0.012
-0.070
£0.930
-0.056

0.540
-0.773
-0.448
-0.158

0.554
-1.315
-0.775

0.544
-0.091

x(4)

0.227
6.010
0.132
-0.188
-0.030
0.551
1.312
0.608
0.834
0.556
-0.115
0.396
0.552
-0.013

x(5)

M)t O et s =t PO OO O N =
-
o
o

o.
o
(9%)
o

bi

-0.504

0.040
-0.084
-0.942
-0.026

0.566
-0.860
-0.463
-0.200

0.546
-1.404
-0.851

0.533
-0.022

-0.262
0.162

bi

0.024
0.043
0.007
0.008
0.019
0.021
0.070
0.010
0.036
0.010

0.045.

0.039
0.0M
0.038

0.027
0.005

.126
.502
310
.181
.645
.149
.143
.124
.249
.430
712
.194
.688
.058

J16 .
.130

S
sample

0.242
0.333
0.342
0.591
0.386
0.489
0.629
0.381
0.277
0.254
0.446
0.322
0.384
0.640

0.415
0.035

2

Ssamg]e

Shi

100.628
59.957
2439.455
5041.095
409.504
521.027
81.376
1527.198
58.971
645.000
98.448
117.617
1210.235
278.543

899.220
360.291

-Zz-




sample
number

606
616
617
618
619
621
622
623
624
627
629
631

mean

x(1)

-0.657
-0.472
-0.321
-0.457
-0.633
-0.178
-1.259
-1.273
-0.771
-0.086
-0.539
-1.417

std err (mean)

x(2)

-0.022
0.361
0.234
0.633

-0.178
0.183

~0.574

-0.726

-0.507
0.000

-0.538

-0.996

x(3)

0.217
0.615
0.247
0.852
0.247
0.366
0.129
-0.686
-0.406
0.289
-0.045
-0.378

x(4)

0.345
0.693
0.703
1.070
0.395
0.575
0.612
-0.285
0.095
0.455
6.715
0.130

Exhibit 2 (continued)

(8) B{"t“b1 >3.747} for 12 "typical” Gaussian samples.

x(5)

2.733
0.741
0.892
1.114
0.8N1
1.034
0.912
0.151
0.983
1.091
1.169
0.192

bi

0.131
0.568
0.356
0.700
0.143
0.393
-0.025
-0.565
-0.143
0.336
0.143
-0.487

0.129
0.111

bi

0.404
0.137
0.224
0.293
0.272
0.211
0.424
0.251
0.322
0.219
0.367
0.340

0.289
0.025

0.523
0.388
0.351
0.640
0.141
0.396
-0.036
-0.564
«0.12]
0.350
0.152
-0.494

0.144
0.110

0.579
0.225
0.211
0.290
0.256
0.202
0.395
0.238
0.310
0.210
0.342
0.314

0.298
0.031

2.052
2.679
0.886
0.979
0.887
0.912
0.870
0.897
0.923
0.917
0.868
0.855

1.144
0.169

»

0.0030
0.1440
0.0301
0.0075
0.0114
0.0333
0.0002
0.0177
0.0035
0.0333
0.0010
0.0022

0.0240
0.0120
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Exhibit 3
Stem-and-leaf oplots for W=3w(u,)
foc thcee sampling situations (n%5)

{i) 640 Gaussian samples:

2914444444444444444444

301

311

32|

331

34|

35| 1
36|

371

38|8888888388888

3910677

40 |

41115

421347

43197

441136

45156

46157
47101456777778388888839999999999999999999999999999999+15
481000900000000000000000000000000000030029008093003900+99+
49101244

(ii) 640 One-Wild samples:

2914444444444444444456

39|

311

321

331

34124

351

361

371
38(366338388383838388888383888383888833388338338883838888+99+
3913122344555799

4913446

4113579

42|

4310246

441389

4512235

461133357388
47101122345566777777738888899999999999999999999999999+35
4810000000000000000000000000000000000003232000000000008+99+
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Exnibit 3 (cont.)
Stem-and-leaf plots for W=2w(u.)
foc thcee sampling situations (n'=5)

(iii) 640 Slash samples:

291444444444494444444444444444444444446

3819

311

321

331

34| !

35|

36|

3713
381577838388388833838833383888883833838388393939939883338+9]
39(002235539

4011233478

41156

4215

43|

443459

45135579

4513889
47111233455566777838889999999999999999999999999999999+22
48|00000020300000000000000000000002000200000000000033+99+
4914

(iv) Number of samples in three weight gcoups:

Dist'n | W<3.3 I 3.3<w<4.3 | Ww4.3
Gaussian | 19 | 23 ] 599
One-wild | 18 | 323 | 299

Slash | 37 ] 151 ] 442
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Exhibit 4
Information of slices for n=5S

A) Relative frejuencies (in %) of slices
(standacd ercors in parentheses)

Gaussian One-wild Slash

W<3. 3 (5:?;) (3:??) (;:15;)
3.3<W<4.3 (2:172) ‘:3521) %;:;g)
a3 oy @ (e

83) Some summacy values on Tbi and Sgi, by slice

Gaussian One-Wild Slash
8.480 9.500 1.272
vac (Ty;) (.014) (.011) (.065)

W<3.3
2 7.902 9.007 9.260
ave(Syi) (g0l (.3881) (.032)
9.330 9.253 2.242
vac(Tyy)  (lae5) (.001) (.220)

3.3<W<4. 3

.2 3.020 9.230 2.771
ave(S i) (la1s) (.002) (.306)
9.203 3.328 9.450
vac(Tyi)  (laaa) (.033) (5.853)

Ww>4.3
2 9.228 1.219 3.300
ave (3p;) (.90 (.052) (2.647)

S oy — e s - -
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Exhibit 5

Log(scale factors), by slice

4) Fitted log(scale factocs) (=log(K)) and
degcees of freedom (=(}:

Gaussian One-wWild Slash
Low v 2 2 3
Weight log (K) 1.59 1.22 1.53
Medium 4 3 4 3
Weight log (X) 3.68 0.28 0.17
High 14 5 5 4
Weight log (X) 0.964 -0.035 -9.10

B) Log(scale factors) foc degcees of freedom = 4:

Gaussian One-wild Slash

Low =4: 1.79 1.96 1.71
Medium =4: 2.85 2.28 @.34
High /=4: -8.0156 -0.12 -0.19

C) Log(scale factocs) foc (/=-1+[-]1+3weights]:

Gaussian One-wWild Slash
Low /=2: 1.32 1.22 1.18
Medium /=3: 8.68 9.13 .13

High /=4: -0.016 -0.12 -0.10




"t"(a)/.95
loglo( t,(a )

0.04

0.00

-0.04

-0.08

-0.12

-0.16

-0.20

-0.24

~0.28
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1.00 1.50 2.00 2.50 3.00 3.50 4,00 4.50

-loglo (a) —9

- "t"(a)/.95
Exhibit 6(a). Plot of loglo(-—_?:TET_-) vs. —1oglo(u)

on high-weight slices, n=5.

(g=Gaussian; w=0ne-Wild; s=Slash;
including 1 std. dev. in "t"(a))

5.00

s
|
|
l

J o




)

't"(a)/7.1
t, (o

[}
loglo(

-Q.

-0.

=0.

-0.

-0.

-0.

.18

.28

38

L8

58

68

78
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1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
- (o) —>
togyg

" (0)/7.1

Exhibit 6(b). Plot ofnglo( =5 ) vs. =-logq,(a)
n

on medium-weight slices, n=S5.
(g=Gaussian; w=0One-Wild; s=Slash;

ineluding 1 std. dev. in "t"(a))

- N - i o mm= e oo, - ——— .

5.00

hgte e

e




"t"(a)/91.2
loglo( t, (@ ) —

-0.

.03

.19

.30 o

AR

.52

.63

.74

.85
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08

1.00  1.50

Exhibit 6(c).

! ! | | { {
2.00 2.50 3.00 3.50 4.00 4,50

-loglo(a) —

"t"(a)/91.2

Plot of loglo( £, (o ) vs. —loglo(a)

on low-weight slices, n=5.
(g=Gaussian; w=One-Wild; s=Slash;

including 1 std. dev. in "t"(a))

————— . IR w =k 1o ¢ ¢ SR Tianevem h e ey - .




—

"M (a) /4.8
1Oglo( t,(a )

-0.

-0.

-0.

.01

.10

.21
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1.00 1.50 2.00 2.50 3.00 3.50 4,00 4.50

-loglo(a)

"t"(a)/4.8

———p

Exhibit 7(a). Plot of lOglo(___E—TET__) vs. -10810(a)
3

on medium-weight slices, n=5.
(g=Gaussian; w=One-Wild; s=Slash;

including 1 std. dev. in "t"(a))

5.00




t2 o ) i

"t"(a)/21.0

loglo(

- 32 -

| ! ! ! l | 1 ! {
1.00 1.50 2.00 2.50 3.00 3.50 4,00 4.50 5.00

-loglo(a) —

"t"(a)/21.0

Exhibit 7(b). Plot of 1og10( e
2

) vs. -loglo(a)
on low-weight slices, n=5.
(g=Gaussian; w=0One-Wild; s=Slash;

including 1 std. dev. in "t"(a))

———— Y YOS e A e et P = o




Biweight-"t" on n=5:
and denominatorcs,
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Exhibit 8

3occowed numecatocs
using pooled ASYMV,

$boccowed 2 3 |
o 4.f. eff. d.f. eff. d.f eff |d.f. eff.
Gaussian
.20091 | 5.2 97.8 | 8.5 82.8 | 9.9, 85.1 |19.]1 86.8
.9002s | 6.2 96.2 | 8.4 84.8 | 9.5 88.6 |18.6 85.7
.0001 | 5.0 95.1 ) 8.5 86.5 | 9.3 91.1 |18.5 85.8
.0005 ] 5.9 98.4 | 9.5 90.8 |11.7 92.8 19.3 87.7
.001 | 5.5 99.3 | 19.2 99.9 |13.1 98.5 20.3 89.]
.aas | 5.6 121.6 | 11.6 181.1 |15.2 137.56 |26.3 93.2
.21 | 5.9 115.7 | 12.5 1233.7 18.4 110.4 33.7 95.9
.0825 ] 8.5 127.4 | 14.5 133.7 |25.1 113.7 |82.8 97.5
.95 | 7.6 133.4 | 18.4 185.7 147.4 115.2 | o 99.4
One-wild
.00091 ] 5.2 58.1 | 8.9 79.9 | 9.3 92.9 124.4 85.1
.0048485 |1 5.8 68.5 | 9.0 78.1 | 9.3 91.5 128.0 94.4
.0001 | 6.0 63.1 | 9.0 66.5 | 9.7 91.1 (30.4 84.2
.0005 | 6.2 54.0 | 9.8 64.9 |13.4 90.2 |42.3 83.3
.2a1 | 5.9 68.1 | 8.3 62.4 |16.6 94.7 |55.3 83.3
.005 | 5.8 75.2 | 12.9 69.2 |34.1 96.1 | ™ 33.2
.a1 | 6.6 81.2 | 16.7 71.8 176.9 96.9 | 82.8
.025 { 8.5 83.5 | 32.7 71.5 | @™ 95.6 | © 82.1
.85 [11.6 83.1 | o 79.9 | o 95.2 | @ 89.9
Slash

.00391 ] 7.8 41.2  19.9 48.3 112.2 50.1 |11.2 49.3
.000685 | 7.7 40.4 | 10.72 45.4 (12.] 52.2 |10.9 43.8
.9001 | 7.5 40.9 | 9.8 46..1 |11.3 51.1 |11.9 48.2
.808s | 7.5 42.1 | 19.4 49.9 |11.5 49.2 111.7 47.5
.201 | 8.0 44.2 | 19.6 52.2 112.9 48.9 |11.9 48.5
.305 | 8.2 50.8 | 11.1 54.3 112.4 49.9 12.1 49.1
.91 | 3.4 51.5 | 11.2 58.1 16.4 51.8 J17.5 50.8
.825 |11.5 52.3 | 19.¢ 60.7 |54.1 52.2 | ™ 5].9
.05 123.1 52.3 1202.4 68.6 | o 55.5 | @ 53.9

— e g s——
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11]

(12]
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